

__
Chapter 5: Variables and Expressions 1-0

Chapter 6. Statement and Control

The topics

Java statements

Control structure (flow of control)

Decision making

IF statement

Different forms of if statement

Switch statement

Difference between switch and if-else

Difference between if-else and ?:(conditional operator)

Nested switch

Iteration (looping)

Components of looping statement

Types of looping statements

for loop

while loop

do while loop

Different variations in looping

Nested loops

Jump statements

Scope and visibility

__
Chapter 5: Variables and Expressions 1-1

1. Java statements

A Java statement is a single command executed by Java Interpreter. Java statements can be a
single statement or a block of statements enclosed within a pair of balanced braces.

A single statement can have any one of the following types:
i. Assignment statement – int a=5;
ii. Arithmetic expression - int a=0.5*b;
iii. Function/method call - double p=Math.sqrt(9);
iv. Object creation using new operator - Scanner sc=new Scanner(System.in);
v. Null or empty statement - String s=null;

A compound statement (a block of statements) can be of the following type:
i. Selection/conditional statements
ii. Iterative statements (Looping)
iii. Jump statements
iv. Exception handling statements (using try-catch block)

2. Control structure (flow of control)

When a program is executed, a control is passed to the first statement of that program and as the
execution of the statements proceeds, the control flows down the program from one statement to another
statement till the last statement reaches. And when the last statement’s execution is over, the program
ends there. This flow of control is of three types in a program. They are as follows –

• Sequential flow
In sequential flow, all the statements present in the program get executed in a sequence (in order of
their appearance) in the program.
Example:

Statement1
Statement2
Statement3

Here, Statement 1 will be executed first, then Statement 2, and finally Statement 3.

• Conditional flow (Decision-making statements)
In conditional flow, there can be a set of statements that get executed and another statement
leftover over unexecuted depending upon a condition.
Example:
 Condition1
 Statement 1
 Condition2
 Statement 2
 Condition3
 Statement 3
Here out of the above 3 statements, only one statement will be executed depending upon which
condition is satisfied.

• Iterative flow (Looping statements)
In looping or iterative flow, one or more set statements can be executed for a certain number of
times. That means the statements will be repeated for a certain number of times depending upon a
condition.

__
Chapter 5: Variables and Expressions 1-2

2.1 Decision making

Selection or decision-making statement allows selective execution of statements. It enables one to
decide and take some of the several possible actions. Selection or decision-making statement
means the execution of statements depending upon a test-condition. If the condition evaluates to
true, then a course of action is followed otherwise, another course-of-action is followed.

There are three types of selection statements, they are :-

a. if statement
b. switch statement
c. conditional operator (ternary operator) statement

__
Chapter 5: Variables and Expressions 1-3

2.1.1 IF statement

The if statement is a conditional branch statement. It is used to select one alternative statement out of two.
The general form of the if statement is given below:
 if (condition)
 statement 1;
 else
 statement 2;
here, if and else are the keywords, the statement can be a single or a block of statements enclosed in
curly braces and the condition is any test-expression that returns a true or false value.

2.1.2 Different forms of if statement

Following are the different forms of if statements that can be used in a Java program:
a. if statement (single if statement)

if (condition)
statement 1;

b. if-else statement (most common form)

if (condition)
 statement 1;
 else
 statement 2;

c. if elseif else statement (else if ladder – multiple conditions)

if (condition 1)
 statement 1;
 else if (condition 2)
 statement 2;
 else
 statement 3;

d. nested if statement (if inside another if – multiple conditions)
if (condition 1)
{
 if (condition 2)

 statement 1;
else
 statement 2;

}
else
{
 if (condition 3)

 statement 3;
else
 statement 4;

}

Statement 1

Statement 2

Condition

true

false

Condition 1

Condition 2

Statement 1

Statement 2

Statement 3

true

true

false

false

Condition 1

Condition 2

Statement 1 Statement 2 Statement 3

Condition 3

Statement 4

false true

false

false

true

true

__
Chapter 5: Variables and Expressions 1-4

e. multiple if statement: here, we have multiple if statements and no else if or else.

 if (condition 1)

 Statement 1;

 if (condition 2)

 Statement 2;

 if (condition 3)

 Statement 3;

Example programs on if structure:

Q1. WAP to print the absolute value of a number.

If N= -5, then the output will 5

If N=5, then there is no change

class Absolute

{ public static void main (int N)

 {

 if(N<0)

 N= - N;

 System.out.println(N);

 }

}

Q2. WAP to print the largest of two unequal numbers

 A=5, B=6, then output will 6

class Largest

{ public static void main (int A, int B)

 {

 if(A>B)

 System.out.println(A);

 else

 System.out.println(B);

 }

}

Q3. WAP to accept two number and print they are equal or unequal.

 import java.util.Scanner;

 class EqualNumbers

 { public static void main (String ar[])

 {

 Scanner sc=new Scanner (System.in);

 System.out.println(“Enter 2 nos.”);

 int a=sc.nextInt();

 int b=sc.nextInt();

 if(a==b)

 System.out.println(“Equal nos.”);

 else

 System.out.println(“Unequal nos.”);

 }

 }

__
Chapter 5: Variables and Expressions 1-5

Q4. WAP to accept two numbers and print which one is largest and which one is smallest.

 (using if.. else if.. else structure)

 import java.util.Scanner;

 class LSNumbers

 { public static void main (String ar[])

 { Scanner sc=new Scanner (System.in);

 System.out.println(“Enter 2 nos.”);

 int a=sc.nextInt();

 int b=sc.nextInt();

 if(a>b)

 System.out.println(a+ “is largest &”+ b+ “is smallest”);

 else if(b>a)

 System.out.println(b+ “is largest &”+ a+ “is smallest”);

 else

 System.out.println(“Both are equal nos.”);

 }

 }

Q5. WAP to accept two numbers and print which one is largest and which one is smallest.

(A) Nesting of if inside if block

import java.util.Scanner;

 class LSNumbers

 { public static void main (String ar[])

 { Scanner sc=new Scanner (System.in);

 System.out.println(“Enter 2 nos.”);

 int a=sc.nextInt();

 int b=sc.nextInt();

 if(a!=b) //checking whether both the numbers are unequal or not

 { if(a>b)

 System.out.println(a+ “is largest &”+ b+ “is smallest”);

 else

 System.out.println(b+ “is largest &”+ a+ “is smallest”);}

 else

 System.out.println(“Both are equal nos.”);

 }

 }

(B) Nesting of if inside else block

 import java.util.Scanner;

 class LSNumbers

 { public static void main (String ar[])

 { Scanner sc=new Scanner (System.in);

 System.out.println(“Enter 2 nos.”);

 int a=sc.nextInt();

 int b=sc.nextInt();

 if(a==b) //if both are equal then no further checking needed

 System.out.println(“Both are equal nos.”);

 else //otherwise checking continues

 { if(a>b)

 System.out.println(a+ “is largest &”+ b+ “is smallest”);

 else

 System.out.println(b+ “is largest &”+ a+ “is smallest”);}

 }

 }

__
Chapter 5: Variables and Expressions 1-6

2.1.3 Switch statement

Switch statement is a multiple-branch selection statement. This selection statement successively
tests the value of an expression against a list of integers or character constants. When a match is
found, the statement associated with that constant is executed. If no match is found, then the
default case is executed.
The general form of the switch statement is as follows:

switch (variable)
{
 case value1: statement 1;
 break;
 case value2: statement 2;
 break;
 case value3: statement 3;
 break;
 default: statement 4;
}

here switch, case, default, and break are keywords, value1, value2, value3 are the
integer/character constants and statement1, statement2, and statement3 are the statements to
be executed. ‘break’ plays an important role in switch case as it transfers the control out of the
switch block when a matched case being executed.

In the absence of a break statement, all the corresponding statements after the matched case will
be executed in a sequence (including the default case statement). This process of execution of all
the statements is called Fall Through in a switch case.

In switch, the comparison takes place for equality only. Switch case works better for menu-driven
programming where there is a fixed set of options for selection and execution.

Some example programs on switch case statements

WAP to accept a digit and print it in words.
 import java.util.Scanner;

 class DigitPrint

 {

 public static void main (String ar[])

 {

 Scanner sc=new Scanner (System.in);

 System.out.println(“Enter a digit”);

 int a=sc.nextInt();

 switch(a)

 {

 case 0: System.out.println(“ZERO”);

 break;

 case 1: System.out.println(“ONE”);

 break;

 case 2: System.out.println(“TWO”);

 break;

__
Chapter 5: Variables and Expressions 1-7

 case 3: System.out.println(“THREE”);

 break;

 case 4: System.out.println(“FOUR”);

 break;

 case 5: System.out.println(“FIVE”);

 break;

 case 6: System.out.println(“SIX”);

 break;

 case 7: System.out.println(“SEVEN”);

 break;

 case 8: System.out.println(“EIGHT”);

 break;

 case 9: System.out.println(“NINE”);

 break;

 default: System.out.println(“Invalid input”);

 }

 }

 }

WAP to accept an alphabet and print it is vowel or not. (FALL THROUGH)

 import java.util.Scanner;

 class Vowel

 {

 public static void main (String ar[])

 {

 Scanner sc=new Scanner (System.in);

 System.out.println(“Enter an alphabet”);

 char a=sc.next().charAt(0);

 switch(a)

 {

 case ‘a’:

 case ‘A’:

 case ‘e’:

 case ‘E’:

 case ‘i’:

 case ‘I’:

 case ‘o’:

 case ‘O’:

 case ‘u’:

 case ‘U’:

 System.out.println(“It is a vowel”);

 break;

 default: System.out.println(“Not a vowel”);

 }

 }

 }

__
Chapter 5: Variables and Expressions 1-8

 In the above program fall through is taking place for every alphabet entered, if that is a
vowel and the output will be the statement placed after the last case i.e. ‘It is a vowel’. For rest of
the cases, the default will get executed.

Similarity between Switch and If-elseif-else and to re-write a switch to if-elseif-else

• Both can work on comparison for equality

• Both are decision making statements

• Both are suitable for menu-driven programming

Program to convert a switch statement to if statement:

switch(c)

{

 case 1: System.out.println(“Monday”);

 break;

 case 2: System.out.println(“Tuesday”);

 break;

 case 3: System.out.println(“Wednesday”);

 break;

 case 4: System.out.println(“Thursday”);

 break;

 case 5: System.out.println(“Friday”);

 break;

 case 6: System.out.println(“Saturday”);

 break;

 case 7: System.out.println(“Sunday”);

 break;

 default: System.out.println(“Invalid day entered”);

}

Re-writing the code in if-else structure:
if(c==1)

System.out.println(“Monday”);

else if(c==2)

System.out.println(“Tuesday”);

else if(c==3)

System.out.println(“Wednesday”);

else if(c==4)

System.out.println(“Thursday”);

else if(c==5)

System.out.println(“Friday”);

else if(c==6)

System.out.println(“Saturday”);

else if(c==7)

System.out.println(“Sunday”);

else

System.out.println(“Invalid day entered”);

__
Chapter 5: Variables and Expressions 1-9

2.1.4 Difference between switch and if-else

If Else Switch

1. If else statement uses relational
expression and logical
expression as its test condition

1. Switch statement tests for
equality in the expression

2. It works on all types of data
types i.e. integer, floating point,
character, String etc

2. It works on only two data types –
integer (int) and character (char)
data type.

3. The values of more than one
variable or expression can be
compared in the test expression.

3. The value of the variable or
expression can be compared
against a set of possible values
or constants

4. It works on a range as any
relational operation can be used
as the test expression.

4. It cannot work on a range as it
checks for equality only.

2.1.5 Difference between if-else and ?:(conditional operator)

IF ELSE ?: (conditional operator)

1. If statement is flexible and can
have more than one statement
in a block.

1. Conditional operator (?:) can
give only one value at a given
time.

2. Nesting of if is easy to use
because of the proper
demarcation of each block.

2. In its nested form the expression
becomes more complex than if-
else

3. Any form of expression can be
used inside if else block, even
print statements.

3. ?: is not so much flexible. Print
statement cannot be used here.

__
Chapter 5: Variables and Expressions 1-10

2.1.6 Nested switch
Like nested if, we can have nested switch statement also. The syntax will be like this:

switch (var1)
{
 case value1:

switch (var2)
{

 case value1: statement 1;
 break;
 case value2: statement 2;
 break;
 default : statement 3;

}
 break;
 case value2:

switch (var3)
{

 case value1: statement 4;
 break;
 case value2: statement 5;
 break;
 default : statement 6;

}
 break;
 default : statement 7;
}

__
Chapter 5: Variables and Expressions 1-11

2.2. Iteration (looping)
The iterative statement means the repetition of a set-of-statements for a certain number of times
depending upon a condition. Till the condition is TRUE, the set-of-statements repeat again and
again and when the condition becomes FALSE, the loop terminates.

What is a loop?
A loop is defined as a block of statements, which are repeatedly executed for a certain number of
times depending upon certain conditions.

2.2.1 Components of looping statement
A looping statement consists of five components. They are as follows:
i. Loop variable - is the variable/counter used in the loop to count the iteration.
ii. Initialization - is the first step in which the starting value is assigned to the loop variable i.e,

the starting value.
iii. Condition - is the final value of the loop variable, where the loop comes to an end.
iv. Re-initialization - is the numerical value added or subtracted to the loop variable in each

(updation) round of the loop and checked with the test-condition of the loop itself.
v. Body - is the set of statements that is to be executed repeatedly.

2.2.2 Types of looping statements
There are three types of loop used in Java programming. They are –

i. for loop
ii. while loop
iii. do while loop

2.2.3 for loop

The for loop statement comprises of three actions, placed in the for loop statement itself. The
three actions are initialization, test-condition and re-initialization. The expressions are separated
by semi-colon. The for loop allows to execute a set-of-statement until a certain condition is
satisfied.
The general syntax of for loop –

for(initialization; test-condition; re-initialization)
{
 set-of-statement; (body)
}

2.2.4 while loop

This is another kind of loop statement. It’s general syntax is –
initialization;
while(test-condition)
{

set-of-statements (body)
 re-initialization;
}

In this case, the test-condition may be any expression and the loop executes till the condition is
true. When the condition becomes false, the loop terminates. This loop is also known as an entry-
controlled loop because, if the condition is false at the beginning, the loop will not be executed for
once.

Initialization

Condition

Body

Re-initialization

__
Chapter 5: Variables and Expressions 1-12

2.2.5 do while loop

This is another kind of loop statement. It’s general syntax is –
initialization;
do
{

set-of-statements (body)
 re-initialization;
} while(test-condition);

In this case, the test-condition is evaluated only at the time of exiting the loop i.e. even if the
condition is false, the loop will executed at least once. This loop is also known as an exit-
controlled loop.

Initialization

Condition

Body

Re-initialization

__
Chapter 5: Variables and Expressions 1-13

2.2.6 Different variations in looping

i. Multiple initializations & re-initialization in a for loop
In for loop, we can have multiple variables for initialization and/or re-initialization within the loop
structure. Below is an example of the said variation -

for (int i=1, j=5; i*j !=0; i++, j--) //here we have two initialization and two re-initialization
{
 System.out.println(i*j);
}

ii. Finite loop & infinite loop

A finite loop is a loop where the number of iterations is fixed or finite i.e. the loop will end after
a certain period of time. Every normal loop is a finite loop where the loop terminates when the
test condition evaluates false.

Some examples of finite loops:

For loop While loop Do while loop

for(int i=1;i<=5;i++)
{
 statements
}

int i=5;
while(i>=1)
{
 statements
 i--;
}

int i=5;
do
{
 statements
 i--;
} while(i>=1);

An infinite loop is a loop where the number of iterations is infinite i.e. the loop will never end as
because the test condition always evaluates true. It is also known as a never-ending loop. So if
in a normal loop, we make the condition true always, the loop becomes an infinite loop.

Some examples of infinite loops:

For loop While loop Do while loop

for(int i=1;i<=5;)
{
 statements
}

int i=5;
while(i>=1)
{
 statements
}

int i=5;
do
{
 statements
} while(i>=1);

for(; true ;)
{
 statements
}

while(true)
{
 …..
}

do
{
 ……
} while(true);

for(; ;)
{
 statements
}

In all the above codes re-initialization statement is omitted from the loop, and thus test
condition becomes true forever and thus the loops become infinite loops.

__
Chapter 5: Variables and Expressions 1-14

iii. Empty loop & Non-empty loop
An empty loop is a loop without any body i.e. this type of loop does not have any statement
within its body to execute. Such loops are also called time-delay loops.

Some examples of empty loops:

For loop While loop Do while loop

for(int i=1;i<=50;i++)
{

}

int i=50;
while(i-->=1)
{

}

int i=5;
do
{

} while(i++<=100);

for(int i=1;i<=50;i++); while(i-->=1); xxxxxxx

In all the above loops, there are no codes in the body of the loop for execution. Thus they all
are empty loops. Generally, empty loops are time-delay loops that are used to consume some
time during the execution of the program without performing any specific task.

A non-empty loop is a normal loop with some statements as its body to execute.

Some examples of non-empty loops:

For loop While loop Do while loop

for(int i=1;i<=5;i++)
{
 System.out.println(i);
}

int i=5,sum=0;
while(i>=1)
{
 sum+=I;
 i--;
}

int i=1;
do
{

System.out.println(i*5);
 i++;
} while(i<=10);

iv. Known loop & Unknown loop
A known loop is a loop where the number of iteration is known prior to enter the loop i.e. how
many times the loop will run can be predicted before executing the loop.

Some examples of known loops:

For loop While loop Do while loop

for(int i=1;i<=5;i++)
{
 statements
}

int i=5;
while(i>=1)
{
 statements
 i--;
}

int i=5;
do
{
 statements
 i--;
} while(i>=1);

__
Chapter 5: Variables and Expressions 1-15

An unknown loop is a loop where the number of iterations is not known prior to entering the
loop i.e. how many times the loop will run cannot be predicted before executing the loop.

Some examples of unknown loop:

For loop While loop Do while loop

for(int i=1;i<=5;i++)
{
 Statements
 if(i%2==0)
 i--;
}

int i=5;
while(i>=1)
{ Statements
 n=sc.nextInt();
 if(n==5)
 i++:
 i--;
}

int i=5;
do
{
 statements
 i--;
} while(i>=1);

v. Entry-Controlled Loop & Exit –Controlled loop

An entry-controlled loop is a loop where the test condition is evaluated before entering the
loop or prior to loop execution. In this case, if the condition holds false at the beginning of the
loop, the loop will not run at all. E.g of Entry controlled loops are – for loop and while loop.

An exit controlled loop is a loop where the test condition is evaluated at the end of the loop
i.e. after the execution of the loop. In this case, if the condition holds false at the beginning of
the loop, the loop will run at least once. E.g of Exit controlled loop – do while loop.

__
Chapter 5: Variables and Expressions 1-16

2.2.7 Nested Loops
A loop may contain another loop inside its body. Such types of loops are called nested loops. In a
nested loop, the inner loop terminates before the outer loop and the inner loop repeats itself
according to the iteration of the outer loop. In Java, nesting of loop can be done as many times as
needed. Given below some examples of nested loops:

for(int i=1; i<=4; i++)//outer loop
{
 for(int j=1; j<=4; j++)//inner loop
 {
 System.out.print(j);//printing in the same line
 }
 System.out.println();//new line
}

In general, we use nested loops in pattern printing where outer loop is for the rows of the pattern
and inner loop is the columns of the pattern.
Dry-run-chart:

Outer loop Inner loop Outer loop Output

I I<=4 J J<=4 PRINT
J

J++ PRINTLN I++

1 True 1 True 1 2 1234

 2 True 2 3

 3 True 3 4

 4 True 4 5

 5 False X X newline 2

2 True 1 True 1 2 1234

 2 True 2 3

 3 True 3 4

 4 True 4 5

 5 False X X newline 3

3 True 1 True 1 2 1234

 2 True 2 3

 3 True 3 4

 4 True 4 5

 5 False X X newline 4

4 True 1 True 1 2 1234

 2 True 2 3

 3 True 3 4

 4 True 4 5

 5 False X X newline 5

5 False X X X X X X

1234
1234
1234
1234

__
Chapter 5: Variables and Expressions 1-17

Some examples of patterns using nested loop:

2.3 Jump statements

There are two jump statements used in Java programs on loops. They are – break and continue.

• break – this statement can appear in a loop as well as in a switch statement. In which ever
statement it appears, it terminates that block statement and places the control to the next line
outside that block statement.

• continue – this statement appears only in loops. continue statement abandons the current
iteration of the loop by skipping over the rest of the statements in the loop body. If immediately
transfer the control to the beginning of the loop once again.

Given below an example to show the working of break and continue statement:

Use of break in a for loop Use of continue in a for loop

for(int i=1; i<=10; i++)
{
 if(i%5==0)
 break;
 System.out.print(i+ “ “);
}
System.out.println(“Loop ends”);

for(int i=1;i<=10;i++)
{
 if(i%5==0)
 continue;
 System.out.print(i+ “ “);
}
System.out.println(“Loop ends”);

Output : 1 2 3 4 Loops ends Output : 1 2 3 4 6 7 8 9 Loop ends
(5 & 10 skipped)

__
Chapter 5: Variables and Expressions 1-18

Use of break in a while loop Use of continue in a while loop

int i=1;
while(i<=10)
{
 if(i%5==0)
 break;
 System.out.print(i+ “ “);
 i++;
}
System.out.println(“Loop ends”);

int i=1;
while(i<=10)
{
 if(i%5==0)
 continue;
 System.out.print(i+ “ “);
 i++;
}
System.out.println(“Loop ends”);

Output : 1 2 3 4 Loops ends Output : 1 2 3 4 (Infinite loop) [here i++ is
unreachable as it is after the continue
statement in while loop]

Use of break in a do while loop Use of continue in a do while loop

int i=1;
do
{
 if(i%5==0)
 break;
 System.out.print(i+ “ “);
 i++;
} while(i<=10);
System.out.println(“Loop ends”);

int i=1;
do
{
 if(i%5==0)
 continue;
 System.out.print(i+ “ “);
 i++;
} while(i<=10);
System.out.println(“Loop ends”);

Output : 1 2 3 4 Loops ends Output : 1 2 3 4 (Infinite loop)

In case of nested loop, the break statement (break or continue) acts upon the loop where it is
mentioned. In switch statement, absence of break results in fall through. In absence of break
statement with a particular case, it is a situation where the control statement flows to the next case
and so on until a break is encounter or until the switch ends. This is known as fall-through.

3. Scope and visibility

In Java programming, a block is the simplest type of structured statements that group a sequence
of statements into a single statement. It consists of a sequence of statements within a balanced
pair of braces.

__
Chapter 5: Variables and Expressions 1-19

Short answer questions (Output finding):

1. The following public function is part of some class. Assume n is always positive. Write down the

output of the following code of segment if n = 11. You have to show the working of the function

calls.

void function(int n)

{

if(n% 2 == 0)

 return 1;

 else

 return function(n/2)* 10 + n%2;

}

2. State the output of the following code segment. Also count and state how many times the loop will

run and what will be the final value of k?

void main()

{ int i = 1, j = 0, k = 0;

while(i <= 1)

 { for(j=0; j<10; j++);

 do

 { System.out.println(k++);

 } while(k< 0);

i++;

}

 }

3. State the final value of q of the following program segment. Also show the dry run sequence:

int m, n, p, q=0;

for(m = 2; m<=3; ++m)

 for(n = 1; n<=m; ++n)

 { p = m + n – 1;

 if(p%3 = = 0)

 q += p;

 else

 q + = p + 4;

 }

4. State the output of the following program code:

class Num

{ int k=0,sum;

 static int i=0;

public static void display(int i)

{

 if(i==0)

 sum = 0;

 for(k=1; k<i ; k=k*2)

 sum+=k;

 System.out.println(sum);

}

 }

__
Chapter 5: Variables and Expressions 1-20

5. Answer the following questions:-

a. Define conditional statement. Write down the various types of conditional statements used in

Java programming with complete syntax

b. What is the significance of test-condition in an if statement? Explain with an example.

c. Write down the similarity and difference between if else statement and ternary operator.

d. What is the significance of break statement in a switch statement?

e. What is fall through?

f. What is dangling else? How can we resolve this problem?

g. What is the significance of default clause in a switch statement?

h. Write down the advantages and disadvantages of switch statement over if else if statement.

i. What are iteration statements? Name the iteration statements provided by Java.

j. What are the components of loop?

k. State the difference between for loop, while loop and do while loop.

l. What is an infinite loop? Give some forms of infinite loops.

m. What is an empty loop? Why it is used in Java programming?

n. Differentiate between break and continue statements inside a loop body with example.

6. Solve the following programs

1) Write a program to calculate commission for the salesmen. The commission is calculated

according to following rates:

 Sales Commission Rate Sales continued for Bonus

30001 onwards 15% 24 months or above 30%

22001-30000 10% 18 – 23 months 25%

12001-22000 7% 12 – 17 months 20%

5001-12000 3% 5 – 11 months 15%

0-5000 0% 2 – 4 months 5%

The program accepts the sales made by salesman and display the calculated commission and

bonus.

2) Write a program to calculate and print the roots of a quadratic equation ax2+bx+c=0. The

coefficients of quadratic equation a, b, c are received as parameters.

3) Write a program to check whether the given number is Prime or not. Also print the next prime

number of that number irrespective of that the given number is prime or not.

4) Write a program to find out all the 3-digit Armstrong numbers, along with their factors.

5) Write a program to calculate the following series:

!

.........
!4!3!2

432

n

xxxx
x

n

+−+−

6) Write a program to print the following pattern, for n, where n will be given by the user: For n=5,

the pattern will be -

*

*1*1*

*2*2*2*2*

*3*3*3*3*3*3*

*4*4*4*4*4*4*4*4*

