
 Inheritance in Java Programs

1. What is Inheritance?

It is the capability or feature of one class so that it can inherit properties from another class.

• Base Class: It is the class whose properties are inherited by another class. It is also called Super Class

or Parent Class.

• Derived Class: It is the class that inherits properties from the base class. It is also called a sub-class

or child class.

Pictorial representation of Inheritance:

It is one of the features of OOPS, where we can reuse an existing class (parent class)

with the help of a newly created class (child class). Inheritance is a form of ‘IS-A’ relationship.

2. FORMS OF INHERITANCE

2.1 Single Inheritance: It is the inheritance hierarchy wherein one derived class inherits from one base class. In

this arrangement, there is only one base class and one derived class. (Given below diagram of single inheritance

where A is the base class and B is the derived class.

2.2 Multiple Inheritance: It is the inheritance hierarchy wherein one derived class inherits from multiple base

class(es). In this arrangement, there are more than one base class and one derived class. (Given below diagram

of multiple inheritance where A and B are the base classes and C is the derived class. (Note: Java does not

support this type of inheritance)

2.3 Hierarchical Inheritance: It is the inheritance hierarchy wherein multiple subclasses inherit from one base

class. In this arrangement, there is one base class and more than one derived class. (Given below diagram of

hierarchical inheritance where A is the base class and B and C are the derived classes.

2.4 Multilevel Inheritance: It is the inheritance hierarchy wherein a subclass acts as a base class for other classes.

In this arrangement, there is one base class from which one derived class is produced and from that derived

class another class is derived. (Given below diagram of multilevel inheritance where A is the base class and

class B is derived from class A, thereafter class C is derived from class B.

 (here B is the child of Class A as well as the parent of Class C)

A

B

A

B

C

A B

C

B

C

A

2.5 Hybrid Inheritance: The inheritance hierarchy that reflects any legal combination of the other four types of

inheritance.

(i) (ii) (iii)

In the above diagram (i) hybrid inheritance is formed by the combination of hierarchical and multiple inheritances,

similarly in the diagram (ii) hybrid inheritance is formed by the combination of hierarchical and multi-level inheritances,

and in diagram (iii) hybrid inheritance is formed by the combination of multiple and multi-level inheritances. (Note: As

in Java Multiple inheritance is not allowed, so, (i) and (iii) will become invalid here)

In Java programming, only three forms of inheritance are possible and they are – single inheritance, hierarchical

inheritance and multilevel inheritance. Multiple inheritance is not possible in Java.

3. VISIBILITY MODE

It is the keyword that controls the visibility and availability of inherited base class members in the derived class. It

can be either private, protected or public.

• Private Inheritance: It is the inheritance facilitated by private visibility mode. In private inheritance, the

protected and public members of the base class become private members of the derived class.

• Public Inheritance: It is the inheritance facilitated by public visibility mode. In public inheritance, the

protected members of the base class become protected members of the derived class and public members of the

base class become public members of the derived class.

• Protected Inheritance: It is the inheritance facilitated by protected visibility mode. In protected inheritance,

the protected and public members of the base class become protected members of the derived class.

Base Class

Visibility

Derived class visibility

Public derivation Private derivation Protected derivation

Private Not inherited Not inherited Not inherited

Protected Protected Private Protected

Public Public Private Protected

Advantages of using inheritance in Java programming.

(i) Reusability: Inheritance helps the code to be reused in many situations. The base class is defined and once

it is compiled, it need not be reworked. Using the concept of inheritance, the programmer can create as many

derived classes from the base class as needed while adding specific features to each derived class as needed.

(ii) Saves Time and Effort: The above concept of reusability achieved by inheritance saves the programmer time

and effort. Since the main code written can be reused in various situations as needed.

(iii) Increases Program Structure which results in greater reliability.

B C

D

A

B

C

D

E

A A B

C

D

4. INHERITANCE & CONSTRUCTOR

A constructor of the child class gets invoked first then its base class constructor is invoked when we create an object of

the child class.

Execution of base class constructor

Method of inheritance Order of execution using objects

 class A

 { int x;

 public A(int i)

 { x=i; }

 ..

 public static void main()

 {

 A ob=new A(10);

 ..

 }

 }

A()//base constructor

X=10

class B extends public A

{ int y;

 public B(int i, int j)

 { super(i); //invoking base constructor

 y=j;

 }

 ..

 public static void main()

 {

 B ob=new B(10,15);

 ..

 }

 }

B()//derived constructor

A()//base constructor

X=10

Y=15

class C extends public B

{ int z;

 public C(int i, int j, int k)

 { super(i, j); //invoking it’s base class

 z=k;

 }

 ..

 public static void main()

 {

 C ob=new C(10,15,20);

 ..

 }

}

C()//derived constructor

B()//derived constructor

A()//base constructor

X=10

Y=15

Z=20

Programs to solve:

Question 1. Create two classes named Library and Issue. The class library will have details of the books. Another class

Issue will inherit class Library purchases that will store the number of days late in returning the book and fine calculated.

Class: Library

Member data: bookno as Integer

 Bookname as String

 Studentname as String

Member function

Library(….) parameterized constructor to give initial values to member data

void display() to display the member data

Class: Issue (it will inherit the class Library)

Member data: daysLate as Integer

 fine as Double

Member function

Issue(….) parameterized constructor to give initial values to the Superclass data members

void return_book() to receive the no. of days late to return the book by the student and compute the fine if no. of

days is late according to the given rule otherwise no fine.

No. of days late <= 10 days Fine of 1 rupee per day

Otherwise Fine of 1.5 rupees per day

void display() to display the details of the student who issued the book along with the total amount as fine.

Solution:

class Library//base class

{

 int bookno;

 String Bookname;

 String Studentname;

 Library(int a, String b, String c)//parameterised constructor

 {

 bookno=a;

 Bookname=b;

 Studentname=c;

 }

 void display()//base class method

 {

 System.out.println(bookno+"\n"+Bookname+"\n"+Studentname);

 }

}

class Issue extends Library //Issue is the child class that is inheriting the Library class

{

 int daysLate;

 double fine;

 Issue(int a, String b, String c, int d)//parameterised constructor

 {

 super(a,b,c);//invoking the base class constructor at the time of the child class's object creation

 daysLate=d;

 fine=0.0;

 }

 void return_book()

 {

 fine=daysLate*((daysLate<=15)?1.00:1.50);

 }

 void display()//method of child class

 {

 super.display();//super keyword used to call the base class method

 System.out.println("FINE: "+fine);

 }

}

Output:

Input:

Question 2. Two classes Worker and Wages will compute the wages of a worker on the no. of hours worked and rate

of wage using the concept of inheritance.

Class: Worker

Member data: Name as String

 Basic as double

Member function

Worker(…) parameterized constructor

Display() to display the member data

Class: Wages (it will inherit the class Worker)

Member data: Hrs as integer

 Rate as integer

 Wage as double

Member function

Wages(…) parameterized constructor to give initial values to the Superclass data members

Ovrtm() to compute the overtime as Hrs*Rate

Display() to display the details of the Worker and his/her wages

Solution:

class Worker

{

 String Name;

 double Basic;

 public Worker(String a, double b)

 {

 Name=a;

 Basic=b;

 }

 public void display()

 {

 System.out.println("Name of the worker is "+Name);

 System.out.println("Basic pay of the worker is "+Basic);

 }

}

class Wages extends Worker

{

 int hrs, rate;

 double wage;

 public Wages(String a, double b, int h, int r)

 {

 super(a,b);

 hrs=h;

 rate=r;
 wage=0.0;

 }

 public double calcOvrtm()

 {

 double ovrtm;

 ovrtm=hrs*rate;

 return ovrtm;

 }

 public void display()

 {

 wage=calcOvrtm()+Basic;

 super.display();

 System.out.println("No. of hrs are"+hrs+"\n"+ "rate per hour is "+rate+"\n"+" wage of the worker is "+wage);

 }

}

Input:

Output:

