Chapter: Simple Data Structure

What is a Data Structure?
Abstract Data Types

Classification Of Data Structure
Linear & Non-linear data structure
Homogeneous & non-homogeneous data structure
Static & Dynamic data structure

Stack Concept Of Data Structure
Push Operation in a Stack
Pop Operation in a Stack

Applications Of Stack

Queue Concept Of Data Structure
Insert operation (Enqueue) in a Queue
Delete operation (Delgueue) in a Queue

wl? @
CS /J{iguzgrtf

An Educator, Artist & Author

(7 &
"‘)p(’_m}(/n :

L nanll
1. What is a Data Structure? _angute

An Educator, Artist & Author

A data structure is basically a collection of elements whose organization is characterized by a set
of operations that are used to store and retrieve the individual element from it.
Operations performed on data structures are —

1. Traversing — processing of each element of the specific data structure exactly once.

2. Searching — searching a particular data item and its location from the specific data
structure.

3. Insertion — addition of new elements from the data structure, if it is not empty.

4. Deletion — deletion of existing elements from the data structure, if it is not empty.

o Sorting — arranging data elements in either ascending or descending order

depending upon a certain key.
1.2 Abstract Data Types

The term ADT refers to a programmer defined data type together with a set of operations that are
performed on that data. It is called abstract just to distinguish it from basic built-in data types such
as int, char and double. In other words, the definition of an ADT consists of two main points — the
internal representation of the ADT's data and the functions to manipulate this data.

In C programming, we can define an ADT by using the keywords — typedef and struct and
defining the functions thus data abstraction.

In Java programming, we can define an ADT by using the keywords — class and interface and
defining the functions thus data abstraction.

2. Classification Of Data Structure
2.1 Linear & Non-linear data structure

A data structure is said to be linear if its elements are sequentially stored in definite order.

In linear data structures, processing of data elements is possible in linear fashion, i.e. data
elements are processed one by one sequentially. Array, stack, queue and linked list are example
of linear data structures.

If the elements are not sequentially stored, then the data structure is said to be Non-linear. In
non-linear data structures, processing of data elements is not possible in linear fashion. Tree and
graph are example of non-linear data structure.

2.2 Homogeneous & Non- Homogeneous data structure

elements are of different data type. For example — structure/class/interface.

2.3 Static & Dynamic data structure

A data structure is said to be static, if during runtime, its size and associated memory allocation
are fixed and definite. For example - array, stack, queue etc. where as if the data structure
shrinks (we can reduce the size) or expands (we can increase the size) as per requirements
during runtime, it is called dynamic. Some examples are linked list, stack and queue using linked
list, tree, graph etc. Array is a static concept whereas pointers/objects are dynamic,

Types of Data Structure

Data Structure

Non-linear Data

Tree

Linear Data
structure
Static Data Dynamic Data
Structure Structure
A y Stack ::;Sg:;::trealed
or using Linked List
A ;s

hm:.lzge::otls staCk
data structure

Stack and Queue created
using Array

Stack

Queue

Queue

Graph

Data structure created using Objects can be homogenous or heterogenous

Linked list

%j”'@';‘zfu&

An Educator, Artist & Author

Stack of Coins

Stack

- N W s w;

Stack of Plates

TOP —»

Can of Tennis Balls

-
S
\ 2
D 4

N

&

-

Stack of Books

% L7 g
c);mu?ém

An Educator, Artist & Author

C

3. Stack Concept of Data Structure *“5,;”,(/.«'},
(((w?u(i
e
In the array, elements can be inserted anywhere, i.e. at the beginning, at the end or at any Rt
position in between. A stack is a linear data structure in which insertion and deletion operations
are permitted only at the end. The LIFO principle is implemented in a stack. A stack is a dynamic

data structure. It can grow or shrink. The number of its elements can increase or decrease.

Opened end
[B
4 We can add elements only at the open end and
we can remove elements only from the open end.
3 Thus stack follows LIFO principle — Last In First Out
2
]
0
I

Closed end

od I
CS p@gl.(zgn/

’ Artist & Author

Applications of Stack

* Convert infix expression to postfix and prefix expressions

o

o’

. Evaluate the postfix expression

Reverse a string

Check well-formed (nested) parenthesis

Reverse a string

Process subprogram function calls

Parse (analyze the structure) of computer programs
Simulate recursion

. In computations like decimal to binary conversion
In Backtracking algorithms (often used in games)

‘e

*

(]

L J
*e

(]

N
*e

&
0.0

e

*

e

*

o’

‘e

*

g
L é/(-)(if)e(%nf :

“anqguly

Basic Stack operations:

We can perform the following operations on a stack-

* push() to insert an element into the stack

* pop() to remove an element from the stack

* top() / peep() Returns the top element of the stack.
 isEmpty() returns true if the stack is empty else false.

* size() returns the size of the stack.

CO Y
C‘)p(’_m}(-n _
CE '(1:(93[:'

3.1 Push Operation in a Stack

The push operation inserts one element at a time in the stack. The Push operation in a stack is
implemented in two parts.
(1) Top is incremented one step up of right/top if STACK OVERFLOW does not occur

(i1) The new element is inserted at the top or at the right position.

Algorithm for PUSH operation (Initially top is at -1)

e Step 1-Increment top (Top++)

e Step 2 - Check whether the stack is FULL. (top == SIZE-1)

e Step 2 -If it isFULL, then display *Stack is FULL!! Insertion is not
possible!!™ and terminate the function.

e Step 3-Ifitis NOT FULL, then set stack|top] to value (stack[top] = value).

1. Push(10)

Opened end

I

10

I
Closed end

Top=0

6. Push(35)

0

2. Push(15)

Opened end

(]

15

10

Closed end

Top=1

3. Push(20)

Opened end

L

20

15

10

Closed end

11 STACK OVERFLOW !!!

CO Y
F‘S PE m)(u

| (—(.(Z‘N{(H{f
Jangu
5. Push(30) I~

Opened end

T
30 (Top=4

20
15

10

Closed end

P v

C ()/)((m)(w [
Canguly
An E[iﬁs & Author

3.2 Pop Operation in a Stack

The pop operation deletes one element at a time from a stack. The Pop operation in a stack is

implemented in two parts.
I One element is extracted from the stack unless STACK UNDERFLOW occurred

Ii. The top is decremented by one step down or left.

Algorithm for POP operation

e Step 1 - Check whether the stack is EMPTY. (top == -1)

e Step 2 -If it isEMPTY, then display "Stack is EMPTY!!! Deletion is not
possible!!!" and terminate the function.

e Step 3-Ifitis NOT EMPTY, then delete stack[top] and decrement the top value by
one (top--).

Initial stack Stack after 2 Pop() 3" Pop()

Opened end Opened end Opened end
L s] I -

30 Top=4 4 4 4

3 3 3

20) 20 Top=2 » 2

15] 15 1 15 Top=1 1|

10 0 10 0 10 0
] I I
Closed end Closed end Closed end

5t Pop() -> Top =-1 6 pop() 111 STACK UNDERFLOW !!I

4 pop()

Opened end

I

10

Closed end

P v

C ()/)((m)(w [
Canguly
An E[iﬁs & Author

Top=0

g
L é/(-)(if)e(%nf :

“anqguly

3.3 Display Operation in a Stack

Algorithm for display operation

e Step 1 - Check whether the stack is EMPTY. (top == -1)

e Step2-Ifitis EMPTY, then display "Stack is EMPTY!!!" and terminate the function.

e Step 3 -If it isNOT EMPTY, then define a variable 'I' and initialize with top.
Display stack([i] value and decrement i value by one (i--).

e Step 4 - Repeat the above step until the 1 value becomes '-1".

S S Y
e /)(_H()(H _

C “anguli

(T —
An Educator, Artist & Author

Write a program in Java to implement the Stack concept through Array. The class structure is given as below:
Class name: Stackofint

Data members/Instance variables:
* intnum[]— a stack on integer to store 5 integers in an array
* int top —to store the top index of the stack

Member functions/Methods:

e StackofInt() — default constructor to set the top at -1

* void push(int s) — store one element (s) to the stack

* int pop()— delete one element from the stack and return the same. If no more elements to delete,
it will return -999

* void display() — to display all the elements present in the stack at any point in time.

In the main() method, create an object of Stackofint class and call the functions accordingly.

8)”@"/{5\'5&

‘im po rt J ava.util.* : An Educator, Artist & Author
class StackofInt//class to represent stack of integer
{
int num[];//array of integer(represented as a Stack)
int top;//pointer to access the index position in the stack
public StackofInt()
{
top=-1;//intial position of the pointer top
num=new int[5];//declaring the array and assigning with ©

}

public void push(int s)//insertion operation in stack, it will add one element to the stack
{
top++;//increasing the top at the begining
if(top==5)
{
System.out.println("Stack full");
top--;//to take the top at previous position
return;

}

num[top]=s;//storing the num into the stack

af 7 B
Cfpflgzlzg‘m

public int pop{()//deletion operation in stack ot o
{

if(top==-1)

{

System.out.println("Stack is empty");
return -999:

}

int s=num[top]:

top--;//decrementing one at a time

return s:

}

public void display()
{
System.out.println("\nDisplay method invoked");
if(top==-1)
System.out.println("Stack is already Empty");
for(int i=top;i>=0;i--)
System.out.println(num[i]);

public static vold maln(sString args||])

{

Scanner sc=new Scanner(System.in);
StackofInt obj2=new StackofInt();//creating an object
int 1i,s;
while(true)//loop for insertion operation
{ System.out.print("enter a number");
s=sc.nextInt();
obj2.push(s);
System.out.print(" added at "+obj2.top);
if(obj2.top<4)
{ System.out.print("\nenter another 1/6");
i=sc.nextInt();

if(il=1)
break:
}
else
break ;

}
obj2.display();
System.out.println("\nPop method invoked");
while(true)//loop for deletion
{ s=obj2.pop();
if(s!=-999)
System.out.println("Element deleted:"+s+" Position of Top:"+obj2.top);
else
break:

}
obj2.display();

(ji;&gd%k/
“Ganguts

An Educator, Artist & Author

; <& Blue): Terminal Window - DataStructure_Stack_Queue
Options

enter a numberi19
added at ©

enter another 1/91
enter a numberi2
added at 1

enter another 1/01
enter a numberi4
added at 2

enter another 1/01

enter a numberi6
added at 3

enter another 1/01

enter a numberi8
added at 4

Display method invoked

18

16

14

12

10

Pop method invoked

Element deleted:18 Position
Element deleted:16 Position
Element deleted:14 Position
Element deleted:12 Position
Element deleted:10 Position
Stack is empty

of Top:
of Top:
of Top:
of Top:
of Top:

=N W

S/)(m)(H

C (Nl H {

An Educator r\s’.&ulc

4. Queue Concept of Data Structure

3!’\

3/)(!!(){!1 _
(((H[}H '}

A queue is a data structure with a FIFO paradigm. It is implemented either in an array or a linked
list. The queue is a collection of data elements in which all insertions are made at one end, called
the rear, of the queue and all deletions are made at the other end, called the front, of the queue.
The typical characteristic of a queue is that the first element to be inserted into a queue is the first

element to be deleted.

We can add elements only at the rear end and
we can remove elements only from the front end.
Thus queue follows FIFO principle — First In First Out

Delqueune at Front

I\ 2 3 4 5

Front end Rear end

Queue Data Structure

Enqueune at Rear

4

Some real-life examples of QUEUE

Luggage checking machine

Vehicles on toll tax bridge

One way exits

Patients waiting outside the doctor’s clinic
Phone answering systems

Cashier line in a store

-[Tickets

emaove
o 0 080 o

¥y

.._-K’\w

o 3 ,
) /)(’ m)ut

Cla ngu b
A
An Educator, Artist & Author

insert

Here are some applications of queues

CPU scheduling- to keep track of processes for the CPU

Handling website traffic - by implementing a virtual HTTP request

queue
Printer Spooling - to store print jobs

In routers - to control how network packets are transmitted or
discarded

Traffic management - traffic signals use queues to manage

intersections

e pflguzg‘m

An Ed ;aton Artist & Author

Cpo \/
(‘é /)((H()(H [
"”ﬂﬁ /)
An E[‘fﬁs’ & Author

PROCESSING OF A TASK IN A QUEUE

Pool of tasks

(1) Task 13
(1) Task 14 In the queue
(1) Task 15

(1) Task 10 () Task 6 a

(1) Task16 (1) Task5 (1) Task4 (1) Task3 (1) Task2
(1) Taskg (D Task7
(1) Task 9

(1) Task 1
(1) Task 12

Processed task

Task 1

Cpo \/
(‘é /)((H()(H [
"”ﬂﬁ /)
An E[‘fﬁs’ & Author

Basic Queue operations:

We can perform the following operations on a queue-

* Enqueue() — This is the process of adding or storing an element to the rear end (back-end)
of a queue.

* Delqueue() — It refers to removing or accessing an element from the front end of a queue.
* isEmpty() — It checks if the queue is empty.

e isFull() — It checks if the queue is full.

ad - ST
C‘é/-}(ﬂ(){?fﬁ {
Canguli

An E[‘ﬁsf & Author

5.1 Insert operation (Enqueue) in a Queue

The insert operation inserts one element at a time in the queue. The Enqueue operation in a

queue is implemented in two parts.
() The Rear index is incremented one step right if QUEUE OVERFLOW does not occur.

(i) The new element is inserted at the Rear index.
Algorithm for ENQUEUE operation

e Step 1 - Check whether the queue is FULL. (rear == SIZE-1)

e Step 2 -If it isFULL, then display "Queue is FULL!!! Insertion is not
possible!!!” and terminate the function.

e Step 3 -If it isNOT FULL, then incrementthe rear value by one (rear++) and
set queue[rear] = value.

SIMPLE QUEUE ENQUEUE OPERATION

Let us take a queue of size 5
0 1 2 3 4

Front/Rear=0 Queue is EMPTY

In the beginning, when
the QUEUE is empty -
Both front and rear points to O

When the rear reached the last index,
the QUEUE becomes FULL and no more
ENTRY allowed.

When the first element is added to the queue, the rear moves to 1

Enqueue(10)
0 1 2

10

Front=0 and Rear=1

Enqueue(11)
0 1 2

10 11

Front=0 and Rear=2

Enqueue(12)
0 1 2

10 11 12

Front=0 and Rear=3

Enqueue(14)
0 1 2

3 4

10 11 12

14

Front=0 and Rear=4

Queue is FULL

L

\

v Y
p(uakﬂ'_

C (‘m(ﬂ_«[i

An Educator, Artist & Author

Here, you can see, the rear
points to the next empty cell
after the last entry. Thus rear
always points to an empty cell
in a queue.

(_ Sﬂ QL
L pm(?f:m :

—“anguly

5.2 Delete operation (Delqueue) in a Queue

The delete operation deletes one element at a time from the queue. The Delqueue operation in a
queue is implemented in two parts.

. One element is extracted from the queue unless QUEUE UNDERFLOW occurred

Ii. The front index is incremented by one step right.
Algorithm for POP operation

e Step 1 - Check whether the queue is EMPTY. (front == rear)

o Step 2 -If it isEMPTY, then display "Queue is EMPTY!!! Deletion is not
possible!!!” and terminate the function.

e Step3-Ifitis NOT EMPTY, then increment the front value by one (front ++). Then
display queue[front] as the deleted <element. Then check whether
both front and rearare equal (front==rear), if itis TRUE, then set
both front and rear to '-1' (front = rear = -1).

SIMPLE QUEUE DELQUEUE OPERATION

0 1 2 3 4
10 11 12 14
Front=0 and Rear=4 Queue is FULL

Initially, the QUEUE is FULL
So, the front is at 0 and the rear is at 4

When the front and rear points to the
same index, it means the QUEUE is EMPTY

%
L /)(m}(H

At first delete operation, the front moved forward at 1 ¢ (-
(H(}H l
Delqueue() Wil
0 1 2 3 4
11 12 14

Front=1 and Rear=4

Element deleted: 10

Delqueue()
0 1 2 3 4
12 14
Front=2 and Rear=4 Element deleted: 11
Delqueue()
0 1 2 3 4
14
Front=3 and Rear=4 Element deleted: 12
Delqueue()
0 1 2 3 4

Front=4 and Rear=4

Queue is EMPTY

Here, you can see as one
element removed from the
queue, the front moved
one cell towards the rear.

% 7 "
CS pé 52(2({!!/
An E[\’;CEIOE Artist & Author

5.3 Display Operation in a Queue
Algorithm for display operation

e Step 1 - Check whether the queue is EMPTY. (front == rear)

e Step 2 -If it is EMPTY, then display "Queue is EMPTY!!!" and terminate the
function.

e Step3-Ifitis NOT EMPTY, then define an integer variable 'I' and set 'I = front+1'.

e Step 4 - Display 'queueli]' value and increment 'I' value by one (i++). Repeat the
same until the 'I' value reaches to rear (i <= rear)

S S Y
e /)(_H()(H _
C “anguli

(T —
An Educator, Artist & Author

Write a program in Java to implement the Queue concept through Array. The class structure is given as below:
Class name: Queue

Data members/Instance variables:

* intar[]—aqueue oninteger to store 5 integers in an array
* int front —to store the front index of the queue

* intrear —to store the rear index of the queue

Member functions/Methods:

 Queue()—default constructor to set the front and rear at 0

* void enqueue(int n) — store one element (n) to the queue

* int delgqueue()— delete one element from the queue and return the same. If no more elements to delete,
it will return -999

* void display() — to display all the elements present in the stack at any point in time.

ad
Cﬁ;&d%ﬁ
anguls
import java.util.*;
class Queue
{
int ar[];

int front, rear; //two pointers that is used to point to the first and last cell in the queue
public Queue()

{

front=rear=0;//they are already at the 1st index and the queue is empty
ar=new int[5];

}
public void enqueue(int n)//inserting an element in a queue
{

if(rear==4)

{

System.out.println("Queue is full");
}

ar[rear++]=n;//first add the data then increment the rear

public int delqueue() siinﬂdg,.
if(front==rear) W
{

System.out.println("Queue is empty"”);
front=rear=0;

return -999;

}

return ar[front++];

y
public void display()
{

if(front==rear)

{
System.out.println("Queue already empty");
return;

}

System.out.println("Queue elements are: ");
for(int i=front;i<rear;i++)

System.out.print(ar[i]+" ");
System.out.println();

af - ESY
public static void main(String args[]) C§pﬁy&m;

{ Scanner sc=new Scanner(System.in); (gjﬁygl
QUEUE Dbj2=nEW QUEUE() , An Educator, Artst & Author
int s;
while(true)
{
System.out.print("enter a number to be added at "+obj2.rear+" @ ");

s=sc.nextInt(),;

obj2.enqueue(s);

if(obj2.rear==4)
break;

}
obj2.display();
System.out.println("\nDelqueue method invoked");

while(true)
{
s=0bj2.delqueue();
if(s1=-999)
System.out.println("Element deleted:"+s+" Position of Front:"+obj2.front);
else
break;

<K& Blue): Terminal Window - DataStructure_Stack_Queue

Options
enter a number
enter a number
enter a number
enter a number
Queue elements
18 11 12 13

Delqueue method
Element deleted
Element deleted
Element deleted
Element deleted
Queue 1is empty

to be added
to be added
to be added
to be added
are:

invoked

:18 Position
11 Position
12 Position
:13 Position

at 6 : 106
at 1T @ 11
at 2 @ 12
at 3 : 13

of Front:
of Front:
of Front:
of Front:

B WRN 2

Ce o
(‘S pé m)rw /

Clanqguli
;L;%f

An Educator, Artist & Author

Differentiate between Stack and Queue forms of data structure.

Stack

Queue

It is a data structure that follows the Last In
First Out (LIFO) technique for operation.

It is a data structure that follows the First In
First Out (FIFO) technique for operation.

The stack requires only one pointer/counter
(called Top) for moving within the stack.

The Queue requires two pointers/counters
(named Front & Rear) for moving within the
stack.

The top is responsible for insertion as well as
deletion operations in the Stack.

The rear is responsible for insertion whereas
the Front is responsible for deletion in the
Queue.

After deletion, if the stack gets emptied, the
top remains in its own position.

After deletion, if the queue gets emptied, the
front and rear need to be placed at -1.

Operational areas of the stack:
e Recursion
e Arithmetic evaluation
e Parenthesis evaluation
e Reversing a string
e Infix to prefix and postfix

Operational areas of the queue:
e Printing sequence

CPU scheduling

Parallel processing

BFS and DFS in Graph

9

e
\

*,
S/;(m)(nw

(H(ﬂl((

(—

Another stack program using a String type array to hold the names of 5 students.

import java.util . *;
class StackofString

{

String names[]=new String[5];
int top;
public StackofString()
{
top=-1;
}
public void push(String s)
{

top++;

if(top==5)

{
System.out.printIn("Stack overflowed");
top--;
return;

}

names[top]=s;

}
public String pop()
{

if(top==-1)

{
System.out.printIn("Stack is empty");
return null;

}

return (names[top--]);

public void display()

{

}

System.out.printin("Stack elements:");

if(top==-1)

{
System.out.printIn("Stack empty");
return;

}

for(int i=top; i>=0;i--)
System.out.printin(names[i]);

public static void main(String args[])

{

Scanner obj=new Scanner(System.in);
StackofString obj2=new StackofString();
String s;
for(int i=1;i<=5;i++)
{
System.out.printin("enter a name");
s=obj.nextLine();
obj2.push(s);
}
obj2.display();
while(obj2.top>=0)

System.out.printin("Element deleted:"+obj2.pop());

%

L /)(nae H

((/au gu b

HE[\ ator, Artist & Author

<& Blue): Terminal Window - DataStructure_Stack_Queue

Options
enter a name
aman
enter a name
bimal
enter a name
chirag
enter a name
deep
enter a name
naman
Stack elements:
naman
deep
chirag
bimal
aman

Element deleted:
Element deleted:
Element deleted:
Element deleted:
Element deleted:

naman
deep
chirag
bimal
aman

S &
Some practice programs for the students: C‘_S/-}(’-ﬁg{()ﬁﬂf
_ ((?&Nﬂ!\,l /2
Question 1 JL
In a computer game. a vertical column and a pile of rings are displayed. The objective of the game is to pile

An Educator, Artist & Author

be removed from the top till the column is empty and then the game is over. Define the class RingGame with
the following details:

Class name : RingGame

Data members/instance variables

ring [| : array to hold rings (integer)

max ;D integer to hold maximum capacity of ring array

upper : integer to point to the upper most element

Member functions :-

RingGame(int m) constructor to initialize, max = m & upper to —1.

volid jump-in(int) adds a ring to the top of the column, if possible, otherwise displays a message
“Column full. Start remowving rings””.

void jump-out() removes the ring from the top. if column is not empty otherwise, outputs a message,

“Congratulations. The game is Over’™’ .
Specify the class RingGame giving the details of the constructor and functions void jump-in{int) and void
Jump-out(). Also define the main function to create an object and call methods accordingly to enable the task.

Question 2

A n ice-cream stall is put up at a school fete. The customers will be served on a First-Come-First served basis.
Only 20 customers can be handled at a time. A class has been designed for this purpose.

Class Wame: IceCreamQueune

Instance variables :

int Ordnol] : to store order number for the customers
int qty [] : to store the ordered quantity
front _: to store the first order
rear : to store the last order
Member WMiethods:
1. TIceCreamQueue() : constructor to create the arrayvs ordno| | and gtw[1. initialize front and rear
and both the array elements with O.
2. int isEmpty () : to check if any customers are out at the stall. It returns 1 for yves and O for no
3. int isFull () : to check if any more orders are possible. It returns 1 for yves and O for no.
4. woid add (int ic, int qt) : to add the next order no. qty to the list
5. woid remove () : to remove the current order details from the list and print the order details along with

the bill to be paid upon the quantity where the price of ice-cream is Rs 20/-
Specifty the class given abowve giving details of the constructor IceCreamQueune(..) and all other methods . No
need to write the main () method.

C_\fpﬁguzgm

An Educator, Artist & Author

Chapter: Simple Data Structure (QUEUE contd.)

Variations In Queue
Circular queue
Advantages of Circular queue
Deque (Double-ended queue)
Advantages of Deque
Two special types of deque
Priority Queue
Applications Of Queue

6.1 Circular queue

In a circular queue, all the elements are arranged in a circle, instead of a row or line. In the
circular queue, a pointer may be used to ensure the maximum size is not exceeded. The pointer
is reset to the initial value of 1, as and when the number of elements in the circular queue
reaches the optimum value.

6.1.1 Advantages of Circular Queue

1. Very often, in an array queue, empty cells are generated at the front after deletion
operations. Although there are many vacant cells, the queue overflow signal is given,
preventing new entries. This deficiency is overcome in the Circular Queue.

2. If both rear and front reach MAX position, then insertion cannot be possible until both are
again re-initialized to 0 in the case of Linear Queue whereas this re-initialization is not
required in the case of Circular Queue.

3. Also, in the case of an array with a larger size where insertion and deletion take place
with very few entries, in a simple queue most of the cells remain unused resulting in a
wastage of memory. But in the circular queue, as shifting of rear and front to 0 do not
required, this never happens. As all the cells will be used at some point in time.

wl? @
C\S[)(lﬁe(?grlf R

An Educator, Artist & Author

Circular
Queue
through
illustration

0 1

2

3

4

Pictorial representation of

5

8”@[”"‘5\'5&

-
a CIrCUIar Queue An Educator, Artist & Author

6 /] size=8

F=R=0
0 1 2 3 4 5 6 7
10 | 11 12 13 14 | 15 16 - QUEUE IF FULL
F R
0 1 2 3 4 5 6 7
X X 12 | 13 14 | 15 16 - 2 ELEMENTS DELETED
F R
0 1 2 3 4 5 6 7
E- 12 | 13 14 | 15 16 17 |QUEUE IS FULL
R F

Another example

0 1 2 3 4 5 6 7 INITIAL VALUES: F=0, R=0

10 | 12 | 14 | 15 TOTAL SIZE: 8
F R

10 | 12 | 14 | 15 | 17 | 20 | 22 QUEUE IS FULL
F R

AFTER DELITING 3 ELEMENTS FROM THE QUEUE, FRONT=3
0 1 2 3 4 5 6 7

15 | 17 | 20 | 22

F R
ADDING ONE ELEMENT, REAR SHIFTED TO 0 AND FRONT=3
0 1 2 3 4 5 6 7

15 17 20 | 22 31

R F
AFTER ADDING THREE MORE ELEMENTS, REAR=2 AND FRONT=3
0 1 2 3 4) 6 7

32 33 15 17 20 | 22 31 |QUEUEIS FULL

R F

INCREMENTING F &R |Index Pos
(0+1)%8 1
(1+1)%8 2
(2+1)%8 3
(3+1)%8 4
(4+1)%8 5
(5+1)%8 6
(6+1)%8 7
(7+1)%8 0

9
L /)(m)("

(((m gu b

S S Y
e /)(_H()(H _

C “anguli

(T —
An Educator, Artist & Author

Write a program in Java to implement the Circular Queue concept. The class structure is given as below:
Class name: CircularQueue

Data members/Instance variables:
* int CQue[]
* intF R, capacity

Member functions/Methods:

* CircularQueue(int n) — parameterised constructor, setting F and R at 0 and capacity = n

e void pushAtRear(int s) — store one element (s) in the queue

* int removeFront() — delete one element from the queue at the front and return the same. If no more elements
to delete, it will return -999

* void display() — to display all the elements present in the queue at any point in time.

of R
class CircularQueue féﬂﬁﬁ&”J
{ Girguls

int CQuel]; B
int capacity;

int F,R;

public CircularQueue(int n)

{

capacity=Math.abs(n);
F=R=0;
CQue=new int[capacity];

}
public void pushAtRear(int num)
{
if((R+1)%capacity==F)
{
System.out.println("Queue is full now");
return;
;
CQue[R]=num;

R=(R+1)%capacity;
System.out.println("FRONT:"+F+" & REAR:"+R);

public int removeFront()
{

if(F==R)

{

System.out.println("Queue has been emptied");
return -999;
}
int n=CQue[F];
F=(F+1)%capacity,
System.out.println("FRONT:"+F+" & REAR:"+R);
return n;

}
void display()
{

if (R==F)

{

System.out.println("Queue is already empty");

return;
}
int 1,
for(i=F;i!=R;i=(i+1)%capacity)
System.out.print(CQue[i]+" ");
System.out.println();

(_ _‘ N/
C‘_S/-}(’-ﬂ(){?wl _;

An Educ:

ator, Artist & Author

[*

Output

Element added at rear

Element added at rear

Element added at rear

Element added at rear
Queue is full

186 11 12 13

Element removed from
Element removed from
Element removed from
Element removed from
Queue is empty

FRONT :4 & REAR
FRONT :4 & REAR:
FRONT :4 & REAR
FRONT :4 & R
Queue is full

20 21 22 23

FRONT:0 & REAR:
FRONT:0 & REAR:
FRONT:0 & REAR:
FRONT:0 & REAR:

front
front
front
front

REAR:4
REAR:4
REAR:4
REAR:4

%5;&d%ﬁ

Gt

An Educator, Artist & Author

6.2 Deque (Double-ended queue)

A deque is a special form of a queue. It is a double-ended queue, in which data can be added
and removed at either end. However, in a deque, neither data can be inserted nor remove data
random from any other position. The word deque is pronounced either “deck” or “DQ’", The deque
stands for double-ended queue. A deque is an ordered collection of elements from which new
elements can be added or deleted from either the first or the last position of the list but not in the
middle.

6.2.1. Two special types of deque

L. Input Restricted Deque — a deque in which items may be deleted at either end, but the
insertion of items is restricted at only one end, say rear, of the queue.

i. Output Restricted Deque — a deque in which items may be inserted at either end, but
deletion of items is restricted at only one end, say front, of the deque.

wl? @
C\S[)(lﬁe(?grlf R

An Educator, Artist & Author

“0 "
C\Sl}(?f]l()({ﬂ’ ;

Clangule

An Educator, Artist & Author

ADD ELEMNET AT FRONT ADD ELEMENT AT REAR —

FRONT 15, 20 30 40 | 50 REAR

REMOVE ELEMENT FROM FRONT REMOVE ELEMENT FROM REAR

TYPES OF DEQUE

Input restricted Deque

* Elements can be inserted only at one end.

Elements can be removed from both the ends.

Output restricted Deque

* Elements can be removed only at one end.

» Flements can be inserted from both the ends.

C

\

_' () /)((’_f_z()(jtﬂ [
Canguly
An E[Ijﬁ.ir.s & Author

Palindrome-checker

Added "RADAR" to the Queue

—_, ™ ™ ™ _ e _ — _ —t
FRONT R A D A R REAR

e —

B e e

One element removed from FRONT One element removed from REAR

R R

If they are matched, the step is repeated else aborted.
If the Queue becomes empty, the string is a Palindrome

8”@?32\'5&

An Educator, Artist & Author

Cpo y

C ()/)((m)ur[
Canguly
An E[ijﬁ.ir.s & Author

Deque as Stack and Queue

As STACK

-~ When insertion and deletion 1s made at the same side.

As Queue

* When items are inserted at one end and removed at the other end.

C 3 i
L /)(’ m)(ﬂ

Cla ngu b
e i
An Educator, Artist & Author

APPLICATIONS OF DEQUE

Steal job scheduling algorithm

The A-Steal algorithm implements task scheduling for several processors

The processor gets the first element from the deque. When one of the
processor completes execution of 1ts own threads it can steal a thread

from another processor. It gets the last element from the deque of another
processor and executes it.

' Undo-Redo operations in Software applications.

OPERATIONS IN DEQUE

» Insert element at back
» Insert element at front
* Remove element at front

» Remove element at back

aYa
. UL

m
J ?\~
F
=

pen

o~
A
~

-~

A
e

wgult

0 1 2 3 4 FRONT REAR

EMPTY 0 0

ADDING 3 ELEMENTS: 10, 12, 15

10 | 12 | 15 0 3

h

R INSERTION AT FRONT NOT POSSIBLE
DELETE ONE ELEMENT AT FRONT: 10

12 | 15

:U
[y
W

F
ADDING 1 ELEMENT AT FRONT: 16

16 | 12 | 15 0 3

h

R INSERTION AT FRONT NOT POSSIBLE
ADDING 1 ELEMENT AT REAR: 17

16 | 12 | 15 | 17 FULL 0 4

F INSERTION AT REAR NOT POSSIBLE

DELETE TWO ELEMENTS FROM FRONT: 16, 12

15 | 17 2 4

F INSERTION AT REAR NOT POSSIBLE

DELETE TWO ELEMENTS FROM REAR: 17, 15

EMPTY 2 2

ol o
C%éﬁz&

An Educator, Artist & Author

Dequeue
through
illustration

o S Y,
e /)(_m)m _

C (anguli

(T —
An Educator, Artist & Author

Write a program in Java to implement the Double-ended queue concept. The class structure is given as below:
Class name: DeQueue

Data members/Instance variables:

* int DQue[] —the size of the queue is fixed at 5

* int Front, Rear

Member functions/Methods:

 DeQueue() — default constructor, setting Front and Rear at O

e void pushAtRear(int s) — store one element (s) in the queue at the rear end

e void pushAtFront(int s) — store one element (s) in the queue at the front end

* int popAtFront() — delete one element from the queue at the front and return the same.

* int popAtRear() — delete one element from the queue at the rear and return the same.
In both cases, if no more elements to delete, they will return -999

» void display() — to display all the elements present in the queue at any point in time.

import java.util.*;
class DeQueue

{

int Dque[]=new int[5];
int front, rear;
public DeQueue()
{
front=0:
rear=0,;
}
public void pushAtRear(int n)//inserting an element in a queue at rear end
{
if(rear==4)
{
System.out.println("Insertion at rear not possible”);
return;

}

Dque[rear++]=n;//first add the data then increment the rear

}

public void pushAtFront(int n)//inserting an element in a queue at front end

{
if(front==0)

{

System.out.println("Insertion at front not possible");
return;

}
Dque[--front]=n;

anguli

An Educator, Artist & Author

public i1nt popAtFront()//delete operation 1n a queue Trom Tront end CO

{ L p%@&igb
if(front==rear) ~/a@gg/&
{ An Educator, Artist & Author

System.out.println("Queue is empty");
return -9999:

t
return Dque[front++];
}
public int popAtRear()//delete operation in a queue from rear end
{
if(front==rear)
{
System.out.println("Queue is empty");
return -9999;
}
return Dque[--rear];
}
public void display()
{
if(front==rear)
{
System.out.println("Queue already empty");
return;
}

for(int i=front;i<rear;i++)
System.out.print(Dque[i]+" ");
System.out.println();

iy o
C‘é P (;fju)gm ;

~anguly

6.3 Priority Queue

A priority queue is a data structure in which elements are inserted arbitrarily but deleted
according to their priority. If elements have equal priorities, then the usual rule applies, that is first
elements inserted should be removed first. Priority queues are of two types:

I. Ascending Priority Queue

ii. Descending Priority Queue

In ascending priority queues, the elements are inserted arbitrarily but it deletes the element
having the smallest priority. In descending priority queues, the elements are inserted arbitrarily
but it deletes the elements having the largest priority.

S S Y
e /)(_H()(H _
C “anguli

(T —
An Educator, Artist & Author

A Priority Queue is used when the objects are supposed to be processed based on
priority. It is known that a Queue follows the First-In-First-Out algorithm, but sometimes
the elements of the queue need to be processed according to the priority, that's when the
Priority Queue comes into play.

The Priority Queue is based on the priority heap. The elements of the priority queue are
ordered according to the natural ordering, or by a Comparator provided at queue
construction time, depending on which constructor is used.

Priority Queue is a data structure in which elements are ordered by priority, with the
highest-priority elements appearing at the front of the queue.

PRIORITY QUEUE OPERATION

0 1 2 3

INITIAL QUEUE EMPTY
OPERATION PRIORITY ELEMENT QUEUE CONTENT

DELETED 0 1 2
ENQUEUE(A) P2 A
ENQUEUE(B) P1 A B
ENQUEUE(C) P2 A B C
DELQUEUE() P1 B A C
ENQUEUE(D) P3 A C D
ENQUEUE(E) P1 A C D
DELQUEUE() P1 E A C D
ENQUEUE(F) P1 A C D

C

An Educ

(\é /)(H! den :

—anguli

ator, Artist & Author

g
L é/(-)(if)e(%nf :

“anqguly

Some application areas of Priority Queue

» Task Scheduling: In operating systems, priority queues are used to schedule tasks based on their priority
levels. For example, a high-priority task like a critical system update may be scheduled ahead of a lower-
priority task like a background backup process.

- Emergency Room: In a hospital emergency room, patients are triaged based on the severity of their
condition, with those in critical condition being treated first. A priority queue can be used to manage the order
in which patients are seen by doctors and nurses.

* Network Routing: In computer networks, priority queues are used to manage the flow of data packets. High-
priority packets like voice and video data may be given priority over lower-priority data like email and file
transfers.

* Transportation: In traffic management systems, priority queues can be used to manage traffic flow. For
example, emergency vehicles like ambulances may be given priority over other vehicles to ensure that they
can reach their destination quickly.

* Job Scheduling: In job scheduling systems, priority queues can be used to manage the order in which jobs
are executed. High-priority jobs like critical system updates may be scheduled ahead of lower-priority jobs like
data backups.

« ST‘ _) y
. . DERAcY
Some programs for brainstorming: G W |
Question 1. JLﬂ\
Stack is a concept of storage which follows LIFO (Last In First Out) order that means the last element pushed An Educator, Artist & Author
into the stack will be popped out first from the stack. Queune is a concept of storage which follows FIFO (First

In First Out) order that means the first element inserted in will be the first element extracted out from the
queue.

Declare a class named StackofString with following declaration:-

Class name - StackofString

Data members:—

int top - to hold the index position

int ™ - the size of the array (max size 50)

String names|[| - array of size IN to store names

Member methods:-

StackofString(int n) - constructor to store the size of the array.
void pushName(String nim)} - to push one names to the array

String popName() - to pop out one name from the array
void displav() - to display content of the array

(a) Specify the abowve class with all the member methods.
(b) Wow using the abowve class object in main method. implement the queue concept of storage where FIFO
order will be followed. That means the name entered first will be extracted first.

Question 2.
Queue is a concept of storage which follows FIFO (First In First Out) order that means the first element

inserted im will be the first element extracted out from the queue. Declare a class with following
declaration:-

Class name - QueuneofString

Data members:—

int front, rear - to hold the index position

int IN - the size of the array (max size 50)

String names]|] - array of size N to store names

Member methods:_

QueuneofString(int n) - constructor to store the size of the array and front=rear=0
wvold enQueueName(String nm) - to insert one name to the array using rear index only
String delQueueName() - to extract one name from the array using front index only
wvoild displav() - to display content of the array

(a) Specify the abowve class with all the member methods.
(b) WNWow using the abowve class object in main method. implement the stack concept of storage where LIFO
order will be followed i.e. the name entered last will be extracted first. Use two objects of Queue in main().

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

