








Stack



We can add elements only at the open end and 
we can remove elements only from the open end.
Thus stack follows LIFO principle – Last In First Out



Applications of Stack



Basic Stack operations:

We can perform the following operations on a stack-

• push() to insert an element into the stack

• pop() to remove an element from the stack

• top() / peep() Returns the top element of the stack.

• isEmpty() returns true if the stack is empty else false.

• size() returns the size of the stack.





1. Push(10) 2. Push(15) 3. Push(20) 5. Push(30)

6. Push(35) !!! STACK OVERFLOW !!!





Initial stack Stack after 2 Pop( ) 3rd Pop( ) 4th Pop( )

5th Pop( ) -> Top =-1 6th Pop( ) !!! STACK UNDERFLOW !!!





Write a program in Java to implement the Stack concept through Array. The class structure is given as below:

Class name:  StackofInt

Data members/Instance variables:
• int num[ ] – a stack on integer to store 5 integers in an array
• int top – to store the top index of the stack

Member functions/Methods:
• StackofInt( ) – default constructor to set the top at -1
• void push(int s) – store one element (s) to the stack
• int pop( ) – delete one element from the stack and return the same. If no more elements to delete, 
            it will return -999
• void display( ) – to display all the elements present in the stack at any point in time.
In the main( ) method, create an object of StackofInt class and call the functions accordingly.











We can add elements only at the rear end and 
we can remove elements only from the front end.
Thus queue follows FIFO principle – First In First Out



Some real-life examples of QUEUE







Basic Queue operations:

We can perform the following operations on a queue-

• Enqueue() – This is the process of adding or storing an element to the rear end (back-end)  

of a queue.

• Delqueue() – It refers to removing or accessing an element from the front end of a queue.

• isEmpty() – It checks if the queue is empty.

• isFull() – It checks if the queue is full.





In the beginning, when 
the QUEUE is empty - 
Both front and rear points to 0

When the first element is added to the queue, the rear moves to 1

Here, you can see, the rear 
points to the next empty cell
after the last entry. Thus rear
always points to an empty cell
in a queue.

When the rear reached the last index,
the QUEUE becomes FULL and no more
ENTRY allowed.





Initially, the QUEUE is FULL
So, the front is at 0 and the rear is at 4

At first delete operation, the front moved forward at 1

Here, you can see as one 
element removed from the 
queue, the front moved 
one cell towards the rear.

When the front and rear points to the
same index, it means the QUEUE is EMPTY





Write a program in Java to implement the Queue concept through Array. The class structure is given as below:

Class name:  Queue

Data members/Instance variables:
• int ar[ ] – a queue on integer to store 5 integers in an array
• int front – to store the front index of the queue
• int rear – to store the rear index of the queue

Member functions/Methods:
• Queue( ) – default constructor to set the front and rear at 0
• void enqueue(int n) – store one element (n) to the queue
• int delqueue( ) – delete one element from the queue and return the same. If no more elements to delete, 
            it will return -999
• void display( ) – to display all the elements present in the stack at any point in time.













import java.util.*;
class StackofString
{
    String names[]=new String[5];
    int top;
    public StackofString()
    {
        top=-1;
    }
    public void push(String s)
    {
        top++;
        if(top==5)
        {
            System.out.println("Stack overflowed");
            top--;
            return;
        }
        names[top]=s;
    }
    public String pop()
    {
        if(top==-1)
        {
            System.out.println("Stack is empty");
            return null;
        }
        return (names[top--]);
    }

public void display()
    {
        System.out.println("Stack elements:");
        if(top==-1)
        {
            System.out.println("Stack empty");
            return;
        }
        for(int i=top; i>=0;i--)
            System.out.println(names[i]);
    }
    public static void main(String args[])
    {
        Scanner obj=new Scanner(System.in);
        StackofString obj2=new StackofString();
        String s;
        for(int i=1;i<=5;i++)
        {
            System.out.println("enter a name");
            s=obj.nextLine();
            obj2.push(s);
        }
        obj2.display();
        while(obj2.top>=0)
            System.out.println("Element deleted:"+obj2.pop());
    }
}

Another stack program using a String type array to hold the names of 5 students.



Some practice programs for the students:







Circular
Queue

through
illustration





Write a program in Java to implement the Circular Queue concept. The class structure is given as below:

Class name:  CircularQueue

Data members/Instance variables:
• int CQue[ ]
• int F, R, capacity

Member functions/Methods:
• CircularQueue( int n ) – parameterised constructor, setting F and R at 0 and capacity = n
• void pushAtRear(int s) – store one element (s) in the queue
• int removeFront( ) – delete one element from the queue at the front and return the same. If no more elements
      to delete, it will return -999
• void display( ) – to display all the elements present in the queue at any point in time.























Dequeue
through

illustration



Write a program in Java to implement the Double-ended queue concept. The class structure is given as below:

Class name:  DeQueue

Data members/Instance variables:
• int DQue[ ] – the size of the queue is fixed at 5
• int Front, Rear
Member functions/Methods:
• DeQueue( ) – default constructor, setting Front and Rear at 0 
• void pushAtRear(int s) – store one element (s) in the queue at the rear end
• void pushAtFront(int s) – store one element (s) in the queue at the front end
• int popAtFront( ) – delete one element from the queue at the front and return the same. 
• int popAtRear( ) – delete one element from the queue at the rear and return the same. 
 In both cases, if no more elements to delete, they will return -999
• void display( ) – to display all the elements present in the queue at any point in time.









A Priority Queue is used when the objects are supposed to be processed based on

priority. It is known that a Queue follows the First-In-First-Out algorithm, but sometimes

the elements of the queue need to be processed according to the priority, that’s when the

Priority Queue comes into play.

The Priority Queue is based on the priority heap. The elements of the priority queue are

ordered according to the natural ordering, or by a Comparator provided at queue

construction time, depending on which constructor is used.

Priority Queue is a data structure in which elements are ordered by priority, with the

highest-priority elements appearing at the front of the queue.





Some application areas of Priority Queue

• Task Scheduling: In operating systems, priority queues are used to schedule tasks based on their priority

levels. For example, a high-priority task like a critical system update may be scheduled ahead of a lower-

priority task like a background backup process.

• Emergency Room: In a hospital emergency room, patients are triaged based on the severity of their

condition, with those in critical condition being treated first. A priority queue can be used to manage the order

in which patients are seen by doctors and nurses.

• Network Routing: In computer networks, priority queues are used to manage the flow of data packets. High-

priority packets like voice and video data may be given priority over lower-priority data like email and file

transfers.

• Transportation: In traffic management systems, priority queues can be used to manage traffic flow. For

example, emergency vehicles like ambulances may be given priority over other vehicles to ensure that they

can reach their destination quickly.

• Job Scheduling: In job scheduling systems, priority queues can be used to manage the order in which jobs

are executed. High-priority jobs like critical system updates may be scheduled ahead of lower-priority jobs like

data backups.



Some programs for brainstorming:


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

