
Inheritance – Part 2

By Spondon Ganguli

JAVA ABSTRACT CLASS

An abstract class is a class that is declared by using the abstract keyword. It may or may
not have abstract methods. Abstract classes cannot be instantiated, but they can be extended
into sub-classes.

Points of abstract class :

1. Abstract class contains abstract methods.

2. Program can't instantiate an abstract class.

3. Abstract classes contain mixture of non-abstract and abstract

methods.

4. If any class contains abstract methods then it must

implements all the abstract methods of the abstract class.

Here is a simple example of a class with an abstract method, followed by a class which implements the method:

// A Simple demonstration of an abstract class.

abstract class A {

abstract void callme(); //only the method declaration

void callmetoo()

{

System.out.println(“Implementation of callmetoo method of class A.");

}

}

class B extends A {

void callme() //same method with complete implementation

{

System.out.println(“Implementation of callme of class B.");

}

}

class AbstractDemo {

public static void main(String args[])

{

B b = new B();

b.callme();

b.callmetoo();

}

}

Output:

Implementation of callme method of class B
Implementation of callmetoo method of class A

// Using abstract methods and classes.

abstract class Figure

{

double dim1;

double dim2;

Figure(double a, double b)

{

dim1 = a;

dim2 = b;

}

abstract double area(); // area is now an abstract method

}

class Rectangle extends Figure {

Rectangle(double a, double b)

{

super(a, b);

}

double area() // override area for rectangle

{

System.out.println("Inside Area for Rectangle.");

return dim1 * dim2;

}

}

class Triangle extends Figure {

Triangle(double a, double b)

{

super(a, b);

}

double area() // override area for right triangle

{

System.out.println("Inside Area for Triangle.");

return dim1 * dim2 / 2.0;

}

}

class DemoAreas {

public static void main(String args[])

{

// Figure f = new Figure(10, 10); // illegal now

Rectangle r = new Rectangle(9, 5);

Triangle t = new Triangle(10, 8);

Figure figref; // this is OK, no object is created

figref = r;

System.out.println("Area is " + figref.area());

figref = t;

System.out.println("Area is " + figref.area());

}

}

What is Interface?

An interface in Java is a blueprint of a class. It has static constants and

abstract methods. Java Interface also represents the IS-A relationship.

An interface is a collection of abstract methods. A class implements an

interface, thereby inheriting the abstract methods of the interface. An interface

is not a class. Writing an interface is similar to writing a class, but they are two

different concepts. A class describes the attributes and behaviors of an object.

An interface contains behaviors that a class implements.

An interface is similar to a class in the following ways:

1. An interface can contain any number of methods as like a class.

2. An interface is written in a file with a .java extension like a class.

3. The bytecode of an interface appears in a .class file.

However, an interface is different from a class in several ways, including:

1. You cannot instantiate an interface.

2. An interface does not contain any constructors.

3. All of the methods in an interface are abstract.

4. An interface contains fields that must be declared with both static and final.

5. An interface is not extended by a class; it is implemented by a class.

6. An interface can extend multiple interfaces.

The relationship between classes and interfaces

As shown in the figure given below, a class extends another class, an interface extends another interface,

but a class implements an interface.

// A simple interface
interface Interface
{
 // public, static and final
 static final int a = 10; // public and abstract
 void display();
}

// A class that implements the interface.
class TestClass implements Interface
{
 // Implementing the capabilities of the interface.
 public void display()
 {
 System.out.println(“Hello");
 }
 public static void main(String[] args)
 {
 TestClass tobj = new TestClass();
 tobj.display();
 System.out.println(tobj.a);
 }
}

An interface Data is defined with a data member and an abstract method compute(). A superclass Base has been
defined to contain the radius of a circle. Define a subclass CalVol which uses the properties of the interface Data
and the class Base and calculate the volume of a cylinder. The details of the members of the interface and both the
classes are given below:

Interface: Data
Data Member: pi =3.142
Member function: double compute()

Class: Base
Data Member: r (radius)
Member function: double compute() – compute the area of a circle

Class: CalVol
Data Member: ht (height)
Member function: double compute() – compute the volume of a cylinder

Computing the area:
= 3.142*10*10
= 312.4

Computing the volume:
= 3.142*12*12*15
= 6786.72

What is Polymorphism?

Polymorphism is derived from two Greek words, “poly” and “morph”, which mean “many” and
“forms”, respectively. Hence, polymorphism meaning in Java refers to the ability of objects to take on
many forms. In other words, it allows different objects to respond to the same message or method
call in multiple ways.

Types of Polymorphism

Function Overloading Function Overriding

It is the process of having more than one function
with same name in a particular class.

It is the process of having two functions having
same name but in two different classes where one
is a base class and another is its child class.

Function signature should be different for every
function.

Function signature should be same for both the
functions.

It is the concept of Polymorphism It is the concept of Inheritance

Differences between Function Overloading and Function Overriding

Multiple Inheritance Interface

It is not supported by classes in Java because of
ambiguity.

It is used in Java as a replacement of multiple
inheritance

Difference between multiple inheritance and interface

What is super keyword in Inheritance?

The super keyword in Java is a reference variable used to refer to the immediate parent class object. Whenever you create

the instance of a subclass, an instance of the parent class is created implicitly, referred to by a super reference variable.

	Slide 1: Inheritance – Part 2
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

