Data Structure — Part 2

By Spondon Ganguli

Cypfﬁguggm

An Educator, Artist & Author

Chapter: Simple Data Structure (QUEUE contd.)

Variations In Queue
Circular queue
Advantages of Circular queue
Deque (Double-ended queue)
Advantages of Deque
Two special types of deque
Priority Queue
Applications Of Queue

Variations in Queue

An Educator, Artist & Author

6.1 Circular queue

In a circular queue, all the elements are arranged in a circle, instead of a row or line. In the
circular queue, a pointer may be used to ensure the maximum size is not exceeded. The pointer
is reset to the initial value of 1, as and when the number of elements in the circular queue
reaches the optimum value.

6.1.1 Advantages of Circular Queue

1. Very often, in an array queue, empty cells are generated at the front after deletion
operations. Although there are many vacant cells, the queue overflow signal is given,
preventing new entries. This deficiency is overcome in the Circular Queue.

2. If both rear and front reach MAX position, then insertion cannot be possible until both are
again re-initialized to 0 in the case of Linear Queue whereas this re-initialization is not
required in the case of Circular Queue.

3. Also, in the case of an array with a larger size where insertion and deletion take place
with very few entries, in a simple queue most of the cells remain unused resulting in a
wastage of memory. But in the circular queue, as shifting of rear and front to 0 do not
required, this never happens. As all the cells will be used at some point in time.

CO -
c\quu?ém R

An Educator, Artist & Author

Circular
Queue
through
illustration

0 1

2

3

4

Pictorial representation of

5

8”&;”%:;

"
a CIrEUIar Queue An Educator, Artist & Author

6 J/ size=8

F=R=0
0 1 2 3 4 5 6 7
10 | 11 12 13 14 | 15 16 - QUEUE IF FULL
F R
0 1 2 3 4 5 6 7
X X 12 | 13 14 | 15 16 - 2 ELEMENTS DELETED
F R
0 1 2 3 4 5 6 7
E- 12 | 13 14 | 15 16 17 |QUEUE IS FULL
R F

Another example

0 1 2 3 4 5 6 7 INITIAL VALUES: F=0, R=0

10 | 12 | 14 | 15 TOTAL SIZE: 8
F R

10 | 12 | 14 | 15 | 17 | 20 | 22 QUEUE IS FULL
F R

AFTER DELITING 3 ELEMENTS FROM THE QUEUE, FRONT=3
0 1 2 3 4 5 6 7

15 | 17 | 20 | 22

F R
ADDING ONE ELEMENT, REAR SHIFTED TO 0 AND FRONT=3
0 1 2 3 4 5 6 7

15 | 17 | 20 | 22 | 31

R F
AFTER ADDING THREE MORE ELEMENTS, REAR=2 AND FRONT=3
0 1 2 3 4 5 6 7

32 33 15 17 20 | 22 31 |QUEUEIS FULL

R F

INCREMENTING F & R

Index Pos

(0+1)%8

(1+1)%8

(2+1)%8

(3+1)%8

(4+1)%8

(5+1)%8

(6+1)%8

(741)%8

O (=~ [(0| (W N

C
L /)(m)("

(((m qu b

C 3 Y
L /)m()ut _

C sanguli

(T —
An Educator, Artist & Author

Write a program in Java to implement the Circular Queue concept. The class structure is given as below:
Class name: CircularQueue

Data members/Instance variables:
* int CQue[]
* intF R, capacity

Member functions/Methods:

* CircularQueue(int n) — parameterised constructor, setting F and R at 0 and capacity = n

e void pushAtRear(int s) — store one element (s) in the queue

* int removeFront() — delete one element from the queue at the front and return the same. If no more elements
to delete, it will return -999

* void display() — to display all the elements present in the queue at any point in time.

f - B
class CircularQueue féﬂﬁﬁ&”J
int CQuel[]; B

int capacity;

int F,R;

public CircularQueue(int n)
{

capacity=Math.abs(n);
F=R=0;
CQue=new int[capacity];

}
public void pushAtRear(int num)
{
if((R+1)%capacity==F)
{
System.out.println("Queue is full now");
return;
;
CQue[R]=num;

R=(R+1)%capacity;
System.out.println("FRONT:"+F+" & REAR:"4R);

public int removeFront()
{

if(F==R)

{

System.out.println("Queue has been emptied”);
return -999;
}
int n=CQue[F];
F=(F+1)%capacity,
System.out.println("FRONT:"+F+" & REAR:"+R);
return n;

}
void display()
{

if (R==F)

{

System.out.println("Queue is already empty");

return;
}
int 1,
for(i=F;i!=R;i=(i+1)%capacity)
System.out.print(CQue[i]+" ");
System.out.println();

g)
(_Sp(ﬂ()flﬂf _;

An Educ

ator, Artist & Author

[*

OQutput

Element added at rear

Element added at rear

Element added at rear

Element added at rear
Queue is full

186 11 12 13

Element removed from
Element removed from
Element removed from
Element removed from
Queue is empty

FRONT :4 & REAR
FRONT :4 & REAR:
FRONT :4 & REAR
FRONT :4 & R
Queue is full

20 21 22 23

FRONT:0 & REAR:
FRONT:0 & REAR:
FRONT:0 & REAR:
FRONT:6 & REAR:

front
front
front
front

REAR:4
REAR:4
REAR:4
REAR:4

%5;&d%ﬁ

Gt

An Educator, Artist & Author

6.2 Deque (Double-ended queue)

A deque is a special form of a queue. It is a double-ended queue, in which data can be added
and removed at either end. However, in a deque, neither data can be inserted nor remove data
random from any other position. The word deque is pronounced either “deck” or “DQ’”, The deque
stands for double-ended queue. A deque is an ordered collection of elements from which new
elements can be added or deleted from either the first or the last position of the list but not in the
middle.

6.2.1. Two special types of deque

L. Input Restricted Deque — a deque in which items may be deleted at either end, but the
insertion of items is restricted at only one end, say rear, of the queue.

i. Output Restricted Deque — a deque in which items may be inserted at either end, but
deletion of items is restricted at only one end, say front, of the deque.

CO -
c\quu?ém R

An Educator, Artist & Author

Cp e
(\5,;(:51(25,1: ;

Clanguli

An Educator, Artist & Author

ADD ELEMNET AT FRONT ADD ELEMENT AT REAR —

FRONT 15, 20 30 ‘ 40 | 50 REAR

REMOVE ELEMENT FROM FRONT REMOVE ELEMENT FROM REAR

TYPES OF DEQUE

Input restricted Deque

* Elements can be inserted only at one end.

Elements can be removed from both the ends.

Output restricted Deque

* Elements can be removed only at one end.

» Elements can be inserted from both the ends.

C

\

_' (Sp((ff()rjﬁ [
Canquly
An E[I%, & Author

Palindrome-checker

Added "RADAR" to the Queue

_,—— — ™ e
FRONT R A D A R REAR

e

.

One element removed from FRONT One element removed from REAR

R R

If they are matched, the step is repeated else aborted.
If the Queue becomes empty, the string is a Palindrome

%SD”Q"J,ZZ&

An Educator, Artist & Author

Co y
C 3/)(’_::(}(# _
“Gangul

An Educator, Artist & Autho

Deque as Stack and Queue

As STACK

» When 1nsertion and deletion 1s made at the same side.

As Queue

* When items are inserted at one end and removed at the other end.

5 y
C)pé m}ut

Cla ngu b
A
An Educator, Artist & Author

APPLICATIONS OF DEQUE

Steal job scheduling algorithm

The A-Steal algorithm implements task scheduling for several processors

The processor gets the first element from the deque. When one of the
processor completes execution of 1ts own threads it can steal a thread

from another processor. It gets the last element from the deque of another
processor and executes it.

Undo-Redo operations in Software applications.

OPERATIONS IN DEQUE

» Insert element at back
» Insert element at front
* Remove element at front

* Remove element at back

ava
. AL

m
J ?*
@
=

pen

s
A
o

o~

»y
e

wgult

0 1 2 3 4 FRONT REAR

EMPTY 0 0

ADDING 3 ELEMENTS: 10, 12, 15

10 | 12 | 15 0 3

h

R INSERTION AT FRONT NOT POSSIBLE
DELETE ONE ELEMENT AT FRONT: 10

12 | 15

:u
[
w

F
ADDING 1 ELEMENT AT FRONT: 16

16 | 12 | 15 0 3

h

R INSERTION AT FRONT NOT POSSIBLE
ADDING 1 ELEMENT AT REAR: 17

16 | 12 | 15 | 17 FULL 0 4

F INSERTION AT REAR NOT POSSIBLE

DELETE TWO ELEMENTS FROM FRONT: 16, 12

15 | 17 2 4

F INSERTION AT REAR NOT POSSIBLE

DELETE TWO ELEMENTS FROM REAR: 17, 15

EMPTY 2 2

@
d:ié‘ﬁz&

An Educator, Artist & Author

Dequeue
through
illustration

5 Y
L /)(’m)m _

C (anguli

(T —
An Educator, Artist & Author

Write a program in Java to implement the Double-ended queue concept. The class structure is given as below:
Class name: DeQueue

Data members/Instance variables:

* int DQue[] —the size of the queue is fixed at 5

* int Front, Rear

Member functions/Methods:

 DeQueue() — default constructor, setting Front and Rear at O

e void pushAtRear(int s) — store one element (s) in the queue at the rear end

e void pushAtFront(int s) — store one element (s) in the queue at the front end

* int popAtFront() — delete one element from the queue at the front and return the same.

* int popAtRear() — delete one element from the queue at the rear and return the same.
In both cases, if no more elements to delete, they will return -999

» void display() — to display all the elements present in the queue at any point in time.

import java.util.x*,
class DeQueue

{

int Dque[]=new int[5];
int front, rear;
public DeQueue()
{
front=0:
rear=0,;
}
public void pushAtRear(int n)//inserting an element in a queue at rear end
{
if(rear==4)
{
System.out.println("Insertion at rear not possible”);
return;

}

Dque[rear++]=n;//first add the data then increment the rear

}

public void pushAtFront(int n)//inserting an element in a queue at front end
{
if(front==0)
{
System.out.println("Insertion at front not possible");
return;

}
Dque[--front]=n;

anguli

An Educator, Artist & Author

public 1int popAtFront()//delete operation 1n a queue Trom Tront end ‘ad S
{ e p%@uiﬁ&
if (front==rear) Canguly
{ An Educator, Artist & Author
System.out.println("Queue is empty");
return -9999:

Y
return Dque[front++];
}
public int popAtRear()//delete operation in a queue from rear end
{
if(front==rear)
{
System.out.println("Queue is empty");
return -9999;
Y
return Dque[--rear];
}
public void display()
{
if(front==rear)
{
System.out.println("Queue already empty");
return;
}

for(int i=front;i<rear;i++)
System.out.print(Dque[i]+" ");
System.out.println();

()
C\é P Hje(?f/lnf ;

~anquly

6.3 Priority Queue

A priority queue is a data structure in which elements are inserted arbitrarily but deleted
according to their priority. If elements have equal priorities, then the usual rule applies, that is first
elements inserted should be removed first. Priority queues are of two types:

I. Ascending Priority Queue

ii. Descending Priority Queue

In ascending priority queues, the elements are inserted arbitrarily but it deletes the element
having the smallest priority. In descending priority queues, the elements are inserted arbitrarily
but it deletes the elements having the largest priority.

C 5 Y
L /)m()ut _
C sanguli

(T —
An Educator, Artist & Author

A Priority Queue is used when the objects are supposed to be processed based on
priority. It is known that a Queue follows the First-In-First-Out algorithm, but sometimes
the elements of the queue need to be processed according to the priority, that's when the
Priority Queue comes into play.

The Priority Queue is based on the priority heap. The elements of the priority queue are
ordered according to the natural ordering, or by a Comparator provided at queue
construction time, depending on which constructor is used.

Priority Queue is a data structure in which elements are ordered by priority, with the
highest-priority elements appearing at the front of the queue.

PRIORITY QUEUE OPERATION

0 1 2 3
INITIAL QUEUE EMPTY
OPERATION PRIORITY ELEMENT QUEUE CONTENT
DELETED 0 1 2
ENQUEUE(A) P2 A
ENQUEUE(B) P1 A B
ENQUEUE(C) P2 A B C
DELQUEUE() P1 B A C
ENQUEUE(D) P3 A C D
ENQUEUE(E) P1 A C D
DELQUEUE() P1 E A C D
ENQUEUE(F) P1 A C D

C

An Educ

(‘é /)((u den :

—anguli

ator, Artist & Author

d 7 B
e é/(-)ﬁ_f)e(?f/lnf ,

~“anqguly

Some application areas of Priority Queue

» Task Scheduling: In operating systems, priority queues are used to schedule tasks based on their priority
levels. For example, a high-priority task like a critical system update may be scheduled ahead of a lower-
priority task like a background backup process.

- Emergency Room: In a hospital emergency room, patients are triaged based on the severity of their
condition, with those in critical condition being treated first. A priority queue can be used to manage the order
in which patients are seen by doctors and nurses.

* Network Routing: In computer networks, priority queues are used to manage the flow of data packets. High-
priority packets like voice and video data may be given priority over lower-priority data like email and file
transfers.

* Transportation: In traffic management systems, priority queues can be used to manage traffic flow. For
example, emergency vehicles like ambulances may be given priority over other vehicles to ensure that they
can reach their destination quickly.

* Job Scheduling: In job scheduling systems, priority queues can be used to manage the order in which jobs
are executed. High-priority jobs like critical system updates may be scheduled ahead of lower-priority jobs like
data backups.

C ST‘ _ 2 y
. . ErRacn
Some programs for brainstorming: F L aaull
Question 1. L/\ﬂ\
Stack is a concept of storage which follows LIFO (Last In First Out) order that means the last element pushed An Educator, Artist & Author
into the stack will be popped out first from the stack. Queue is a concept of storage which follows FIFO (First

In First Out) order that means the first element inserted in will be the first element extracted out from the
queue.

Declare a class named StackofString with following declaration:-

Class name - StackofString

Data members:—

int top - to hold the index position

int N - the size of the array (max size 50)

String names[| - array of size N to store names

Member methods:—

StackofString(int n) - constructor to store the size of the array.
void pushName(String nm)} - to push one names to the array

String popName() - to pop out one name from the array
void displav() - to display content of the array

(a) Specify the abowve class with all the member methods.
(b) Wow using the abowve class object in main method. implement the queue concept of storage where FIFO
order will be followed. That means the name entered first will be extracted first.

Question 2.
Queue is a concept of storage which follows FIFO (First In First Out) order that means the first element

inserted im will be the first element extracted out from the queue. Declare a class with following
declaration:-

Class name - QueneofString

Data members:_

int front, rear - to hold the index position

int ™ - the size of the array (max size 50)

String names|] - array of size N to store names

Member methods:_

QueueofString(int n) - constructor to store the size of the array and front=rear=0
wvolid enQueueName(String nm) - to insert one name to the array using rear index only
String delQueueName() - to extract one name from the array using front index only
wvoid displav() - to display content of the array

(a) Specify the abowve class with all the member methods.
(b) WNWow using the abowve class object in main method. implement the stack concept of storage where LIFO
order will be followed i.e. the name entered last will be extracted first. Use two objects of Queue in main().

%W

	Slide 1: Data Structure – Part 2
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Thank you

